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Abstract-A crack impinging an interface joining two dissimilar materials may arrest or may
advance by either penetrating the interface or dellecting into the interface. The competition between
dellection and penetration is e~amined in this paper when the materials on either side of the interface
arc elastic and isotropic. The energy release rate for the deflected crack is compared with the
m;nirnum energy release rate for a penetrating crack. Thc results can be used to dctcrminc the rangc
of interface toughness relative to bulk material toughness which ensures that cracks will be deflected
min thc intcrface.

I. INTRODUCTION

In this paper several prohlems arc analyzed which provide insight and quantitative infor
mation on the role an interface between dissimilar clastic materials plays when approached
by a l:rack. At issue is whethcr a crack impinging on an interface will pass through the
interfal:e or be deflected into the interface. Such questions arc of importance. for example,
in the design of the interfal:e between libel' and matrix in fiber reinforced ceramic composites
where it is desired that any matrix crack approaching a libel' deflect along the interface,
therehy allowing the libel' to survive. The results from this study provide estimates of the
relativc toughncss of the interface to that of the material on the uncracked side of the
interf.lcc necessary to ensure that a crack will deflect into the interface rather than pene
trate it.

The four scts of problems analyzed arc shown in Fig. I. In set A, a symmetrically
loadcd, semi-infinite main crack impinges the interface at a right angle. The three problems
analyzed (problc.:ms A I, A2 and A3) permit an assessment of the competition between
penetration of the interface and deflection. Set B in Fig. 2 addressed the same competition
when the main crack impinges on the interface at an oblique angle. An unusual feature of
the ohlique problem for the main crack (with a = 0) is the fact that there is a sillyle dominant
mode of deformation at the crack tip when the materials across the interface arc dissimilar.
Thus the asymptotic behavior at the crack tip is influenced by the remote loads only through
a single stress intensity factor. The competition between penetration and deflection as posed
in problems BI am! B2 does not depend on the nature of the remote loads in a strict
asymptotic sense when the branch length a is arbitrarily small compared to the length of
the main crack.

A consequence of the existence of a single dominant mode of the main crack impinging
the interface at an oblique .lngle is a tendency for a crack approaching the interface to turn
either into or away from the interface, depending on the relative stitTnesses of the materials
on either side of the interf'lce. In problem C in Fig. I the behavior of a straight wcdge
loaded. semi-infinite crack is determined as the crack approaches the interface. This problem
gives further insight into the tendency of a crack to curve into or away from the interface
when it approaches at an oblique angle. Finally, in problems D I and D2 the competition
between penetration through the interface or deflection into it is analyzed for an oblique

t Visiting Scholar. Harvard University. August 19l\7-August 19l\8.

1053
SAS 25: 9-F



1054 \lISc;. Yt:AS HE and J. W HCTCHlSSOS

2

y

2

Al A2 A3

y

2

0201

Fig I C. . r.l<:k geometries

l
:~?;

x x

2 ~l'
x

2

C

y

1.0

2

oFi 1 a -0~.5;--------~
g. _. Stress singularity exponent for fJ '" O.

-0.5-1.-;:;0~--- ::o:;----+-- ---



Crack deflection at an interface 1055

wedge-loaded crack. These problems are solved forfinite values ofa/I where I is the distance
of the wedge loads from the interface. The behavior as a/I-+ 0 is discussed in relation to
the problems in set B.

There are a number ofearlier studies which analyze details ofcrack penetration and/or
deflection at an interface without specifically focussing on the competition between the two
modes of cracking. The solution procedures used in the present study are similar to, or
extensions of, the integral equation methods used in these earlier papers. Cook and Erdogan
(1972) and Erdogan and Biricikoglu (1973) investigate the behavior of a crack penetrating
the interface at right angles. Goree and Venezia (1977) analyze several problems involving
penetration and deflection for a main crack impinging the interface at right angles.
Additional work along these same lines is reported by Lu and Erdogan (1983). The tendency
for a crack approaching an interface or a free surface at an oblique angle to be deflected
one way or the other has been elucidated by studies of Erdogan and Arin (1975) and more
recently by Lardner et al. (1989).

In all cases the materials on either side of the interface are taken to be elastic and
isotropic with shear modulus Pi and Poisson's ratio Vj where i = I and 2 correspond to the
arrangement shown in Fig. I. For the plane strain, traction boundary value problems
considered. the solution variables of interest depend on only two non-dimensional com
binations of the material parameters. These are the Dundurs' (1969) parameters

(I)

(2)

The first parameter is most readily interpreted when expressed as IX = (E, - E~)/(E, + E~)

where E= E/( I - v~) is the plane strain tensile modulus. The solutions to the four sets of
problems are presented and discussed in the following sections. The problems are formulated
and analyzed in the Appendices.

2. DEFLECTION VERSUS PENETRATION FOR A CRACK PERPENDICULAR TO TIlE
INTERFACE (PROBLEMS A)

In the set A of problems the semi-infinite reference crack with a =0 is perpendicular
to the interface with its tip at the interface. A symmetric loading with respect to the crack
plane is applied and the traction ahead of the crack in material I is characterized by

(3)

where ;. is real and depends on IX and Paccording to (Zak and Williams. 1963)

A plot of ;. as a function of IX for P=0 is shown in Fig. 2. The amplitude factor k, is
proportional to the applied load. Explicit knowledge of k, is not needed here. The reference
crack is imagined to advance in the three ways indicated in Fig. I: one by penetration
straight through the interface (A I) and two by deflection into the interface (A2 and A3).

In the case of penetration, the stress state at the advancing tip is pure mode I. By
dimensional considerations its stress intensity factor must depend on k. and a according to

(4)

where c is dimensionless. The energy release rate is
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The traction on the interface directly ahead of the right-hand tip of either of the
deflected cracks (A2 or A3) is characterized by (Rice, 1988)

where r = x-a. i = J-=-I. and

I (1- fJ)
<; = 2n In I + fJ .

In these cases. dimensional considerations require

(6)

(7)

(8)

where d and e are dimensionless complex valued functions of iX and fJ. The energy release
rate of the deflected crack is

(9)

where

( 10)

In each of the three cases the energy release rate goes to zero or becomes unbounded
as a -> 0 depending on whether). is less than or greater than 1/2. But the dependence of ~1

on {/ is very weak since i. dilfers only slightly from 1/2 except for iX < -0.7 (cf. Fig. 2).
More importantly. the ratio ~1,d~1p is independent of {/ (and kd and is given by

(II)

Thus the relatil'e tendency of a crack to be del1ected by the interface or to pass through it
can be assessed using this ratio.

Integral equation methods have been used to solve for the function C(iX. (l) for the case
of the penetrating crack and for d(iX. mand e(iX. mfor the two cases involving del1ected
cracks. The details of the solution procedures are given in Appendices I and II. The ratio
~1,d~11' is plotted as a function of iX in Fig. 3 for {l = 0 for each case. The effect of {l has not been
systematically c:xplored since it is felt that ,iX is the more important of the two p'lrameters. In
any case, the etlect of {l on the ratio is not expected to be large. as was seen in a similar
problem (He and Hutchinson. 1989). Note. for example. that {l appears explicitly in (11)
only to order {V The relative amounts of K, and K 1 at the right-hand tip of the deflected
cracks arc presented in Fig. 4 using the measure I/J = tan - , (K1/K d.

Let ~f}" be the toughness of the interface (which may depend on I/J) and let ~f}, be the
mode I toughness of material I. The impinging crack is likely to be deflected into the
interface if

(12)

since then the condition for propagation in the interface will be met at a lower load than
that for penetration across the interface. Conversely, the crack will tend to penetrate the
interface when the inequality is reversed. The deflected crack branching to one side (as
opposed to the crack with the double branch) generally controls the condition for deflection
into the interface since it corresponds to the highest ratio ~f}"rf}p, although the double
branching crack could control if ~IJ" depends strongly on I/J. For iX not too different from
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Fig. 3. Ratio of energy release rate of deflected crack to penetrating crack at same amount of crack
advance a.

zero. the critical ratio is approximately 1/4. It increases to approximately 1/2 when IX = 1/2.
corresponding to a plane strain tensile modulus of material I being three times that of
material 2.

The analysis has not addressed the question of the load level required for the crack to
deflect into the interface or to penetrate it. Rather, it has exploited the fact that the energy
release rates of the competing crack trajectories depend on crack advance a, in exactly the
same way. Thus the relative energy release rates can be unambiguously determined and
used to assess which of the competing trajectories will be selected. When A. < 1/2 it is
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Fig. 4. Combination of interface stress intensity factors at right-hand tip of deflected crack.
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Fig. 5. Stress singularity exponents for crack impinging interface at an oblique angle <p = 0).

necessary to invoke intrinsic flaws in either the interface or in material I for the crack to
grow from the tip when a = O. The condition (12) implicitly assumes these intrinsic flaws
of comparable size. The above conclusions are also drawn under the assumption that the
crack approaches the interface quasistatically. Dynamic effects may alter the conclusions
somewhat when thc impinging cmck is traveling at a significunt fmction of the elastic wave
speed.

J CRACK TERMINATING AT AN INTERFACE AT AN OBLIQUE ANGLE

There is a peculiarity to the problem ofa crack impinging on an interface ut an oblique
anglc which makes a discussion of the relative tendency for deflection or penetration
somewhat more complicated than the case of the perpendiculurly impinging cr'lck. The
peculiurity concerns the nature of the singular stress fields for an oblique cruck terminuting
at the interl~lce with the geometry shown in the insert in Fig. 5.

For a homogeneous material (ex = /J = 0) or for the crack making a right anglc with
the interl~lce between two diflcrent materials (WI = tr/2), the most singular stress fields of
physical interest .It the tip can be written as

( 13)

where ;. = 1/2 for the homogeneous material and ;. is given in Fig. 2 for (WI = tr/2). In
these cases, the eigenvalue problem for the exponent ), has a double root yielding two
linearly independent fields l1"~i and l1"~J which can be taken to be symmetric and anti-symmetric
relative to the crack plane. When the crack lies on the interface (WI = 0) the eigenvalue is
also double with ;. = 1/2 when /J = O.

For values of WI between 0 and tr/2 the eigenvalue problem no longer hus double roots
when the materials are dissimilar. Instead of (13). the two most singular fields of interest
are

( 14)

where ;'1 and ;'z arc real for p = O. Corresponding to each eigenvalue is only one eigen
function instead of two. The two exponents ;.• and ;'2 are plotted as a function ofWl in Fig.
5 for :x ±0.5 with /J = O. If )'1 is identified as the larger of two exponents, the dominant
singular field is
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Fig. 6. Ratio of ratio of energy release rate of deflected crack to maximum energy release rate of
penetrating crack at same a for asymptotic problem characterized by (15) when a - 0 (fJ = 0).

U;j = kl,-·'ul)'«(}) (15)

where (1:,11«(1) is a mixed mode O-variation which depends on Clh and (x.

Thus. unlike the problems mentioned above-indeed, unlike most linear crack prob
lems-the oblique crack terminating at an interface has a fixed mixed mode (i.e. a fixed 0
variation) independent of the remote loading combinations acting on the body. The zone
of dominance of (15) may be very small and must vanish as (X and p vanish since then the
two-term representation (13) holds. Similarly, dominance must vanish as OJ I -+ 0 or n/2. In
spite of the limited range of dominance expected for (15), we have considered the com
petition between penetration and deflection at an interface for an oblique crack where (15)
specifics the dominant field at the tip of the main crack. These results are discussed in the
next section. In the last two sections, we circumvent the issue of limited dominance of the
asymptotic problem by analyzing an oblique crack under a specific wedge-loading.

4. ASYMPTOTIC LIMITS FOR DEFLECTION VERSUS PENETRATION FOR AN OBLIQUE
CRACK (PROBLEMS B)

In problems BI and B2 (cf. Fig. I) the dominant singularity field (15) is imposed as
the remote field on the main semi-infinite crack. The competition between penetration of
the interface and ddlcction into the interface parallels that discussed in Section 2 for the
perpendicular crack under symmetric load. Now. however, the direction taken by the crack
penetrating into material I, w" must be determined. The direction chosen will be that which
maximizes the energy release rate.

The stress intensity factors at the tip of the penetrating crack are related to k I and a
by

( 16)

( 17)

where c is a dimensionless complex-valued function and attention wil be focussed on
material combinations with p = O. The energy release rate of the penetrating crack is

I-VI "1"
I'f}p = -2--JcI-kja -"'.

III

The maximum energy release rate with respect to W I for fixed a is denoted by "9';.'. The
interface stress intensity factors of the deflected crack can be expressed as (8) with e = 0
,md k, and ;. replaced by k l and ;." respectively. The ratio of the two energy release rates
is again independent of a and is given by

(18)

Numerical results for this ratio as a function of (X are shown in Fig. 6 for the case where
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w~ ::::: ~5 . When material I is stiff compared to material 2 (x > 0) the maximum energy
release rate of the penetrating crack is only slightly larger than that of the deflected crack.
In fact. when :l is greater than about 0.5 the maximum energy release rate of the penetrating
crack is attained for W I - 0 so that the critical penetrating crack coincides with the detlecting
crack. When material I is the more compliant material the energy release rate of the
penetrating crack significantly exceeds that of the deflecting crack.

The discontinuity in '5J;'1;"' in Fig. 6 at :l = 0 is associated with exchange in roles of
(1'1' i.:! and (0"1)(8). O'I~)(O) in (\~) as x changes sign. The V-variation of the dominant
singularity field (15) changes discontinuously as x changes sign. As has already been
mentioned. the dominance of the single field ( 15) vanishes as x --+ O.

We proceed from here by considering the specific wedge-opening loading indicated in
problems C and D in Fig. I. One consequence of a sil/.'Ile dominated mixed mode for the
crack terminating at the interface is that a straight crack approaching the interface will
necessarily experience a mixed mode at its tip. This is illustrated by example in the next
section where its implications arc discussed. In Section 6 we reconsider the competition
between penetration and detlection for the oblique crack under the wedge loading for finite
values of (/.1.

S. STRAIGHT CRt\CK UNDER WEDGE LOADING APPROACHING AN INTERFACE
AT AN OBLIQUE ANGLE (PROBLEM C)

With the tip of the crack in material 2. the near tip lidds are a combination of modes
[ and [I. lIere we examine the history of K, and KII for the semi-infinite, straight crack
loaded by the opening wedge forces per unit thickness P shown as C in Fig. I. The solution
for the strcss intensity factors can be writtcn as

( II)

where I is the distance of the tip from the loads and where c is a dimensionless. complex
function of :l, /1. (!) ~ and /ill). When I is small compared to II) the crack tip is in mode I with
lhe wdl-known n:sult

for 01)« I. (20)

As I increases the crack tip interacts wilh the interface and some amount of mode II is
induced. Plots of Kill K, as a function of 1/10 an: given in Fig. 7 for three angles of approach
«(!)~ ::::: 30 .45 and 60 ) for two material combinations ('X = 0.5 and 'X = -0.5. each with
/f = 0). These results have been computed using an integral equation appro'lch given in
Appendix B.

When the crack approaches a more compliant material across the interface (1 < 0) KII

become negative. although it is very slightly positive for an initial range of 1/11)' If it were
free to curve following a path with KI , always zero, the crack would curve toward the
interface since the straight craek has KII < O. Conversely. when the straight crack
approaches a stitrer material across the interface ('X > 0). KII becomes positive suggesting
that an actual crack trajectory satisfying K'I = 0 would curve .Iway from the interface.
Conjectured trends are sketched in Fig. 8. Similar conclusions have been drawn in the
studies of Erdogan and Arin (1975) and Lardner et al. (1989).

The variation of the energy release rate

(21 )

with 1/In is shown in Fig. 9 for W ~ = 60' and for 2 = 0 and ±0.5 with /1 = O. These variations
relleet the behavior that is well-known for a crack approaching an interface at right angles.
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Fig. 7. Ratio of A'II to K, for wedge l(laded straight crack approaching the inlerf;lce at several angles.
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Fig. 11. Conjectured trends for crack approaching an interface.

Wh~n thc matcrial across thc interface is stitTer than that where the crack resides (~ > 0),
'!J must drop to zero as the interface is approached. But note from Fig. 5 that A. I is only
very slightly smaller than Ij2 for w! = 60' and ~ = 0.5, and thus fIJ has not yet started to
drop steeply even when Ijlo = 0.95. When iX = -0.5. corresponding to a more compliant
material across the interface, ;'1 = 0.67 and the increase in f§ as the interface is approached
is more dramatic.

6. DEFLECTION VERSUS PENETRATION OF A WEDGE· LOADED CRACK
IMPINGING AN INTERFACE AT AN OBLIQUE ANGLE {PROBLEMS OJ

The main semi-infinite crack in Set D in Fig. I is subject to opening wedge loads, P, a
distance. I. from the interface along the crack line. Competition between penetration (D I)
and deflt.'Ction (D2) is analyzed. As noted in the previous section an oblique crack under the
wedge-opening loading is not expected to approach the interface as a straight crack.
Nevertheless. the problems analyzed in this section should give further insight into the
crack deflection process. Moreover. the results of this section place the behavior of the
perpendicular crack in perspective.

The solution for the stress intensity factors in problem D I can be written as
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(II = 0).

(22)

where c is a dimcnsionless complex-valucd function of thc argumcnts indic.ltl:d (II is again
takcn to bc zero). Thc cnergy rdease rate is

( I - v ) p=
'f: _ I I'I!.'/" - ') (I .

_Ill

Thc maximum valuc of ~~" with respect to UJ I for IIxed all is dcnoted by ~fj;;I"'.

,
I

I,,
,'0.5

- - ~/ - ---... ConJectured behavior for

0<0/.(<< .1
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a

Fig. 10. Ratio of energy release rate of deflected crack 10 maximum energy release rate ofpcnetrating
cra>:k at same a for 0)1 "" 45 and {J "" O.
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Fig. II. Ratio ofenergy release rale ofdeflected crack to maximum energy release r.tle ofpenetrating
crack at same a r~lr wedge loaded crack wllh m l :: )0', 4S',IiO'; a/I == 0.1 and p "" o. The curve for

(II l '" I)()' is from Fig. 3.

With II =:: O. the interface intensity factors for the deflected cmck can be expressed in
a manner similar to (22). i.e.

(24)

The energy release rate of the deflected cr<tck. ~(h is ag;.lin given by (9) (with e =:: 0) where
Kf+K~ = Idl 2plfl.

The ratio of the competing energy release rates is

-05 o 0.' a 1.0

Fig. 11. Combination of interface stress intensity factors at tip of del1ected craek for 011" 300., 45'.
60' and 90'.
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(25)

This ratio is plotted as a function :x for Wz = 45' in Fig. 10 for a/I = 0.5 and 0.1; the
asymptotic limit of Section 4 for a/I-+ 0 is also included, taken from Fig. 6. Equation (25)
has a finite limit as a -+ 0, and we believe that this limit must be the asymptotic result of
Section 4. We have not attempted to compute the ratio (25) for values of a/I smaller than
0.1. However, we conjecture that results for significantly smaller a/I will approach the
asymptotic limit in the manner indicated in Fig. 10.

Curves of ~fJJ/~IJ;a, as a function of :x are shown in Fig. II for a/I = 0.1 and W2 = 30,
45 , and 60. Included also is the curve from Fig. 3 for the singly deflected crack with
w z = 90 . The associated measure I/t of the relative combination of the stress intensity factors
of the deflected crack is given in Fig. 12. As one would expect intuitively, the competition
between deflection and penetration becomes more favorable to deflection the more oblique
is the crack impinging the interface. If one desires to design the toughness of an interface
such that a crack of any orientation will be deflected, then the results for the perpendicularly
impinging crack (wz = 90) control the choice of interface toughness. For :x-values in the
range of - 0.5 to about 0.25 the toughness of the interface (measured in energy units) must
be less than about one quarter of the toughness of the material across the interface if all
cracks are to be dellected .
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APPENDIX A: INTEGRAL EQUATIONS

In thIS Appcndi:< we scI up thc intcgral eljuations for the plane strain problem specified in Fig. AI. which is
representative of scvcral or thc various prohlems.

Lct <1,('/,) and a,,(,/,) hc thc r and II components or an cdge dislol:ation located on thc radial hnc () = LV I at
7., ,: 'I, e""'. ilmllct 1>,('/,) and 1>,,(,/ J be thc r and {I wmponcnts or an edge dislocation located on the radialhne
II = lr+W, at 7., = ,/,c"·"":'. Thc stresses induccd by a dislocation ean be obtained using the Muskhclishvili
mcthod and arc givcn as follows.

Fig. A 1. Geometry conventions.
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The stress components (1,11I and (1.-1 at a point Z == t:e"""'" on the radial line f) == It+w: induced by the:
dislocation at Z: == 'I: e'·.....'· are given by

Similarly. the stresses at a point Z = t, e"'" on the radial line (} = w, induced by the dislocation at Z: ==
'I: e"··"'" are given by

(A1)

The stresses at a point Z == t, e''''' on the radial line (J =w, induced by the dislocation at Z, = 'I, e"'" are giwn
by

(A3)

The stresses at a point Z = t: e'···'"'' on the radial line (} == It +w: induced by the dislocation at Z, = ", e"'" are
given by

where i == Ft.n denotes the complelt conjugate. and

A('1,) == JI,/[4lti(l-v,)J{a.+ia,,) e'''' ,

B(,,:) == Jl:/[·hi(l-vl»)(h, +ih,,) e""''','

and where

G== -i5(-~. - _::.-:::. +e:'"'' ..::.:L), (:-::) (:-::): (:-::):

G .. _,,(.~I_.- :.:::_~:. +e:'''', (:.:.:.::!.<.:.:.::..::~:1.)_ ..:'.... e~"'"
: :-:: (:-:,j' (:-:,)' :-:,

I-~, , :.(I-i5d -:(I-A,)+:,(i5, -A,)G,:=II .,_.,~-- - +c·w,j~ ~·w": __ ~."" .. _,~ "~'-'~'--"".. _-"," .~r-_~~"::""_'_' ... _._-
:-:, (:-::).

(I-A,) ,,(1-,',)
G~ == -~~~-- +e' "', '.:-::.::':--

- ... t ... ...,

(I-M l"., (I-S)
F~ =-~+e ':-=:-'

... - ... ! .... ..~

In the above

(A4)

(AS)

(M)

fJ-rt
b= -l+fJ

~==rt+{I
{I-I

/A7)

/AS)

The semi·infinite reference crack corresponding to 0"" 'I: "" 'x! is repr~nted by a distribution ofdislocations
B('I:). and the segment of crack corresponding to 0" 'I, :;; a is represented by a distribution A/II,). The B(I/:)
and A/'I,) are chosen such that the net tractions resulting from eqns (A I), (A2). (A3) and (A4) arc lero everywhere
on the crack surface. Since the a-dependence of the solution is known from dimensional considerations. a can be
taken to be unity. The dual integral equations are then
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With the changes of variables

rr: = (1 +~:HI- ':,l. I, = (1-'-11,) (I-u,l.

The integral equations (A9) can be rewritten as

(A 10)

('A(rr,)drr, f'[D(')F( 1'6(")F( )11' . ··d.'.,_In (t, - rr 1) + _, ~: l'I,. I, + ~: .'1,. I, 1 - ~ ,) . c" -
1 .',

+~J, [.I('I,)F,(",.I,)+ ..i(,/,)F,('I,.I,I!c .... d", =() (Alii

where D(~ ,) = 8('1,). The rcprcsentatitlOS uf A ('I, I itnd O( ~.') fpr the ddferent prohlems arc constructed III

Appcndi1\ B. The stress intensity factors at the tip of a dellccll'd crack arc !,:Iven hy

1\,+il\ll = (2rr)" e.. ·· I,nl :1-11,)' ''';(,/,):
'/, .1

APPENDIX B: DISLOCATION RI'I'RFSFNTATIONS

The representation of the dislueatiun dlstrihutiuns for the dilrcrent prohlet11s arc summan/ed here.

(AI~)

Prohlems A I "tid 81
The remote lield imposed on the semi·infinite crack IS (1) in A I and (15) in B I. Let II ..~ u( r. - rrt- 1'1,)

-u(r.rr+wl) be the relative displ'lCements of the crack faces associated with thesc lields. From the singularity
'lIlalysis for the crack terminating at the interface. the ret110te dislocation distribution can he obtained rrom
b = dcS/drr: and eqn (A5) as

(lI1)

where k ;;; k, in AI. and k;: k, and i.;: i., in Bl. The complex constant c" is determined hy the slllgulanty
analysis.

The most singular stresses in the vicinity of the kink of the crack ('It x =.l' = 0) have the form a - r "a(O)
where. in general.p is a complex numherdepending on ~.Ii. "" and lIJ,. llein and Erdogan (1971) have ohtained
the equation for p. When fJ = 0, p is real. In the neighhorhoud of the kink 8 - '1: I' and A - 'I, 1'.

The representation of D(~,) which builds-in the currect slngubrity at the kink and which approaches eqn
(Bl) remote from the interface is

where the ds are complell. coelTicients which must he ohtaill<:d in the solution and process and T,(,:) is thc
Chebyshev polynomial of first kind or degree j. The n:presentation for A (1/ , ) is taken as

A('1,) =","11-",) "I:,u/;'
1- ,

and. by (A 12). the stress intensity factors at lht: tip of tht: crack art:

1\, +il\lI = (2rr)': e'"'' I: iiI'
,- ,

By substituting (B2) and (83) into the two integral t:quation (A II) ont: ohtains the two equations.

(1l1 )



Crack deflection at an interface
~ .
L [d.E,.(u:)+J.F,.(u:»)+ L [a,G,,(u:)+a,H,,(u:») == L,(u:)

II_I ,_I

~ .
L [d.E:o(t,)+J.F:o(t,») + L [a,G:,(t,)+ti,H:,(t,») == L,(/,)

.... I /_ I
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(B5)

(B6)

where integral expressions for E... F... G". H" and L i are readily identified. To determine the m+n complex
coefficients d. and a,. (B5) is satisfied at m Gauss-Legendre points on the interval -1 < u: < I. and (B6) is
satisfied at n Gauss-Legendre points on the interval 0 < I, < I. On the basis of numerical experimentation with
various choices of m and n. the calculations were carried out with m == n = 8. We believe the results for the energy
release rates reported in the figures are accurate to within about one percent. In the case of problem AI. symmetry
implies that the real parts of d. and aJ are zero.

PmMt'mDI
The formulation of problem DI is similar in most respects to BI except that the concentrated wedge loads

must be applied. This is accomplished by considering the solution for a concentrated force Pacting on an otherwise
traction·free boundary of a semi-infinite plane. The singular behavior of N(rt:) near rt: = I must be consistent
with thiS solution. i.e.

(B7)

as rt: - t. The dislocation density remote from the wedge loading will have the form

(B8)

where A· is the eigenvalue of the problem in Section 3 which is the next larger than A, and A: in (14). This exponent
characterizes the asymptotic outer solution to the semi-infinite crack problem for a loading which is confined to
the vicinity of the tip.

A representation for D(~:) consistent with the above features and the singularity at the kink is

(B9)

where

(810)

and .:" ~ (f-I )/( I +t). The representation for A(",) is still given by eqn (B3). The integml equations reduce to
the form given in (B5) and (B6). ;lOd the siliution procedures are the same as described above. The results reported
were computed with til,. " = ll.

1'",Mm,.\' A~. A3. iI'2 111/11 [J'2
The formulation of these problems dill'ers from their counterparts above only in th'ltthe portion of the crack

heyond the kink lies along the interface. When {I ,. O. eqn (AJ) gives the tmction on the interface when w, - 0
with F, = 0 and F: = - (J, +.:.\ ,)/(1, -',,). The second integral equation in (A II) reduces to

(BII)

The reprc:sentalions for ..1(",) and D(~:l arc still given hy (8'2) and (IlJ). and the interface stress intensity factors
arc giwn hy

~

1\, +iK: = (1-?:)('2rr)": L til'
,-I

(012)

I'r"Ml'tII C
The integral equation governing the dislocation distribution B(,,:) for the wedge loaded erack approaching

the interface is

(BIJ)

where " and I are zero at the crack tip. The distribution B(rt) must be consistent with the wedge loading (07) and
a square root singularity at the crack tip. The representation used is the same as that in (89) and (BIO) with
p ,. 1/'2. The integral equation is reduced to algebraic equations for the m complex coefficients d. as in the previous
problems. The results reported in Figs 7 and 9 were computed with m = 20 for I!fo< 0.7 and m == 30 for /flo ~ 0.7.


